

Welcome to prompt_responses’s documentation!

This is a generic implementation of prompts and responses to collect user data.
It comes with a set of APIs and integration with Django Rest Framework to make your life easier.
It is also extendable to use your own data and algorithms.

Requirements

	Python 2.7, 3.4, 3.5, 3.6

	Django 1.9, 1.10, 1.11

Index

	Installation

	Usage

	Models

	Views

	Django Rest Framework

	Contributing

	History

Installation

Install with pip

$ pip install django-prompt-responses

Add it to your INSTALLED_APPS

INSTALLED_APPS = (
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 ...
 'prompt_responses',
 'sortedm2m', # for the ability to change the order of Prompts in the Django admin
 ...
)

Sync your database

$ python manage.py migrate prompt_responses

Head to the usage section for the next steps.

Usage

Admin

This package comes with integration for Django Admin.
It is the easiest way to create new prompts and order them into sets.

In a standard Django installation, the admin views should be automatically registered.

Views

This package includes one view and one mixin you can use to display
prompt instances and create responses.

Read more

Models

This package includes four models: Prompt, PromptSet, Response, and Tag.

Read more

Django Rest Framework

To use the included viewsets in your Django Rest Framework API, simply register them
in a router like so:

from rest_framework import routers
from prompt_responses.viewsets import PromptViewSet, PromptSetViewSet

router = routers.DefaultRouter()
router.register(r'prompts', PromptViewSet)
router.register(r'prompt-sets', PromptSetViewSet)

urlpatterns = [
 url(r'^api/', include(router.urls))
]

This offers read-only API endpoints for prompts and prompt sets and
one writable endpoint to create responses.

Read more

Models

This page gives a discription of the implemented models and their relations.

Prompt

	
class Prompt

	A Prompt is an abstract definition of a task or question that will be presented to a user
in order to collect responses.

In order to present a Prompt to a user, it needs to be instantiated by calling :method:`get_instance()`.

In its simplest form, a Prompt defines some text and a type for either free-form
or rating respones.

A more advanced version can be connected to any other type of object. When instantiated,
these Prompts will be populated with one object chosen from the set of objects of the defined type.
The default implementation returns one random object, but this can be customized.

The most advanced version defines two types of objects and allows for tagging, i.e. the user
is asked to rate the relationship between objects of the first set and objects of the second.
When instantiated, these Prompts will be populated with one object chosen of the first type
and a number of objects of the second type.

Prompts also offer a range of analysis functions. For the sake of readability, these are documented here.

	
type

	The type of the Prompt. Currently supported types: likert, openended, tagging

	
text

	The text to be displayed to the user. The string can use the {object} placeholder
which will be replace by the object the prompt is instantiated with.

	
scale_min

	For prompts with scale responsed, the minimum value of the scale. Defaults to 1

	
scale_max

	For prompts with scale responsed, the maximum value of the scale.

	
prompt_object_type

	An object of class ContentType to define the model of objects this prompt will be populated with when instantiated.
One prompt instance will be populated with one object of this type.
A response will contain a reference to this object.

	
response_object_type

	An object of class ContentType to define the model of objects this prompt will be populated with when instantiated.
One prompt instance will be populated with a number of objects of this type.
A response will create :class:`Tag`s with references to these objects.

	
get_instance()

	Instantiate this Prompt. Will get one or more objects, depending on the type of prompt.

	Returns:	PromptInstance

	
create_response()

	Convenience function to create (and save) a Response for this prompt.

Pass rating or text,
as well as user and prompt_object as needed.

To save tagging responses, pass tags=[(object1, rating1), (object2, rating2), ...]
OR alternatively, tags=[{‘object_id’: id1, ‘rating’: rating2}, ...]

Note that responses per se are not unique per user
(as some experiments might require asking the same question multiple times).
Some of the analytics functions offer a user_unique parameter to restrict analysis
to the user’s latest response only.

In contrast, tags are ensured to be unique for (prompt, user, prompt_object, response_object).
If the user tagged this combination before, the Tag will be updated, incl. its response relation
(i.e. the original Response object will no longer be associated with this tag).

This method verifies that the objects match the models defined in the Prompt and
raises a ValidationException on a mismatch.

	Returns:	the newly created Response

	
get_object()

	Used to determine the object for instantiating this Prompt.
The default implementation is to retrieve a random object from the queryset.
You can override this method to customize this.
See Prompt.prompt_object_type.

	
get_queryset()

	The queryset from which the object will be drawn when instantiating this Prompt.
The default implementation is to return all objects of type Prompt.prompt_object_type.

	
get_response_objects()

	Used to determine the objects for instantiating this Prompt.
The default implementation is to retrieve a random object from the queryset.
You can override this method to customize this.
See Prompt.response_object_type.

	
get_response_queryset()

	The queryset from which the objects will be drawn when instantiating this Prompt.
The default implementation is to return all objects of type Prompt.response_object_type.

Scales

For prompts that require rating responses, usually you want to confine the acceptable values to a certain scale.

The Prompt model offers some utility functions to create arbitrary scales for displaying them in forms.

TODO

PromptInstance

	
class PromptInstance

	A PromptInstance is not a database model, but created on the fly when a prompt is instantiated.
It encapsulates the prompt and any object instances that are needed to display it to the user.
It only lives for one request.

	
prompt

	

	Type:	Prompt

	
object

	An object with which this prompt has been populated.
See Prompt.prompt_object_type.

	
response_objects

	A list of objects with which this prompt has been populated. Can be presented for tagging prompts.
See Prompt.response_object_type.

	
__str__()

	The string representation of this class is the prompt’s text, formatted with the object.
Useful for directly printing a prompt_instance in a template.
See Prompt.text.

Response

	
class Response

	A Response can have a rating and/or a text.
If the prompt has a prompt_object_type,
the object obtained during instantiation should be saved as prompt_object.

	
rating

	

	Type:	integer

	
text

	

	Type:	string

	
prompt_object

	Any object that this response is related to.
Its type should match prompt_object_type.

	
prompt

	The Prompt that this response is related to. This is a required field.

	
user

	The user that this response belongs to. This is a required field.

Tag

	
class Tag

	User ratings for associations between two objects.
Tags are contained in a Response. You shouldn’t need to create these objects
yourself – rather, refer to Prompt.create_response().

	
response_object

	The object that this tag refers to. Should match the type
defined in the Prompt.
When you instantiate a Prompt, this should be one of the instance’s
response_objects.
See Prompt.response_object_type.

	
rating

	

	Type:	integer

	
response

	The Response that this tag is related to. This is a required field.

PromptSet

	
class PromptInstance

	You can optionally use PromptSets to organize several prompts together.
PromptSets have a name and contain an ordered list of Prompt objects.

	
name

	A name to identify this set. Should be in slug format.

	
prompts

	A many-to-many field to add any number of Prompts to this set.
Prompts are orderable. If you use the Django admin and added sortedm2m to your INSTALLED_APPS,
the widget should allow drag and drop.
See django-sortedm2m’s documentation [https://github.com/gregmuellegger/django-sortedm2m] for details
about how this works.

Views

Mixins

	
class PromptInstanceMixin

	Provide prompt and prompt_instance to a view.

Tries to get prompt by looking up the pk parameter from the request URL.
Override get_prompt() to choose a different way of obtaining the prompt object.

Example usage

from prompt_responses.views import PromptInstanceMixin

class MyView(PromptInstanceMixin, View):
 ...

The view will have both prompt and prompt_instance as attributes.
They are also added to the template context.

	
prompt

	The Prompt that is displayed in this view

	
prompt_instance

	The PromptInstance that is displayed in this view

Class-based Views

	
class CreateResponseView(PromptInstanceMixin, ...)

	A simple view that can display a template with the instantiated prompt and a form to
create a response for this prompt.

You can add it as-is to your URL configuration:

from prompt_responses.views import CreateResponseView

urlpatterns = [
 url(r'^prompt/(?P<pk>[0-9]+)/$', CreateResponseView.as_view(), name='create_response'),
]

Or have a look at the code to get an idea of making your own view.

For example, you can sub-class CreateResponseView and override get_prompt()
to choose a different way of obtaining the prompt object.

This view requires authentication and uses the user from the current request to create the response.
You can also use the BaseCreateResponseView and provide an alternative get_user() method instead.

Django Rest Framework

To use the included viewsets in your Django Rest Framework API, simply register them
in a router like so:

from rest_framework import routers
from prompt_responses.viewsets import PromptViewSet, PromptSetViewSet

router = routers.DefaultRouter()
router.register(r'prompts', PromptViewSet)
router.register(r'prompt-sets', PromptSetViewSet)

urlpatterns = [
 url(r'^api/', include(router.urls))
]

This offers read-only API endpoints for prompts and prompt sets and
one writable endpoint to create responses.

The API endpoints are hyperlinked together, i.e. they return URLs to other resources.
It is recommended to follow these links instead of constructing your own URLs.

Prompt API

Get a list of all prompts:

GET api/prompts/

Get details about a prompt:

GET api/prompts/<prompt_id>/

Get an instance of a prompt:

GET api/prompts/<prompt_id>/instantiate/

Get an instance of a prompt within the context of a prompt set:

GET api/prompts/<prompt_id>/instantiate/<prompt_set_name>/

Create Response API

Save a response for a prompt:

POST api/prompts/<prompt_id>/create-response/

This endpoint expects the following data:

TODO

PromptSet API

Get a list of all prompt sets:

GET api/prompt-sets/

Get details about a prompt set:

GET api/prompt-sets/<prompt_set_name>/

Traversing an ordered list of prompts

When you use prompt sets, you can follow the links returned in the responses to
traverse the list of prompts. Both PromptSet and Prompt API responses will
contain a next_prompt_instance URL.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/graup/django-prompt-responses/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

prompt_responses could always use more documentation, whether as part of the
official prompt_responses docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/graup/django-prompt-responses/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-prompt-responses for local development.

	Fork the django-prompt-responses repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-prompt-responses.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-prompt-responses
$ cd django-prompt-responses/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 prompt_responses tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/graup/django-prompt-responses/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_prompt_responses

History

0.1.0 (2017-11-07)

	First release on PyPI.

Index

 _
 | C
 | G
 | N
 | O
 | P
 | R
 | S
 | T
 | U

_

 	
 	__str__() (PromptInstance method)

C

 	
 	create_response() (Prompt method)

 	
 	CreateResponseView (built-in class)

G

 	
 	get_instance() (Prompt method)

 	get_object() (Prompt method)

 	
 	get_queryset() (Prompt method)

 	get_response_objects() (Prompt method)

 	get_response_queryset() (Prompt method)

N

 	
 	name (PromptInstance attribute)

O

 	
 	object (PromptInstance attribute)

P

 	
 	Prompt (built-in class)

 	prompt (PromptInstance attribute)

 	(PromptInstanceMixin attribute)

 	(Response attribute)

 	prompt_instance (PromptInstanceMixin attribute)

 	
 	prompt_object (Response attribute)

 	prompt_object_type (Prompt attribute)

 	PromptInstance (built-in class), [1]

 	PromptInstanceMixin (built-in class)

 	prompts (PromptInstance attribute)

R

 	
 	rating (Response attribute)

 	(Tag attribute)

 	Response (built-in class)

 	
 	response (Tag attribute)

 	response_object (Tag attribute)

 	response_object_type (Prompt attribute)

 	response_objects (PromptInstance attribute)

S

 	
 	scale_max (Prompt attribute)

 	
 	scale_min (Prompt attribute)

T

 	
 	Tag (built-in class)

 	text (Prompt attribute)

 	(Response attribute)

 	
 	type (Prompt attribute)

U

 	
 	user (Response attribute)

Data Analysis

The main point of having a well-documented, sound data schema of user responses
is to enable powerful analysis of the collected data.
This can be useful for research, visualizing business peformance, or
even personalization.

This package comes with a set of simple statistical functions. Please have a look
at the code in order to extend them with your own analysis.

TODO

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Welcome to prompt_responses's documentation!

 		Installation

 		Usage

 		Admin

 		Views

 		Models

 		Django Rest Framework

 		Models

 		Prompt

 		Scales

 		PromptInstance

 		Response

 		Tag

 		PromptSet

 		Views

 		Mixins

 		Class-based Views

 		Django Rest Framework

 		Prompt API

 		Create Response API

 		PromptSet API

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		History

 		0.1.0 (2017-11-07)

_static/up-pressed.png

_static/comment-bright.png

